Some Notes on the Inverse Domination Conjecture

John Asplund, Joe Chaffee, James Hammer*
Auburn University

April 20, 2013
1 Introduction
 • Definition Theory
 • Observations
 • Initial Conjecture

2 Progress
 • Initial Progress
 • Strengthening the Conjecture
 • Baby Steps
 • Exemplary Case
 • Summary
Note.

Graphs in this talk are simple.

Definition

- For a vertex \(v \in V(G) \), \(N(v) = \{ u | \{ u, v \} \in E(G) \} \) and \(N[v] = \{ v \} \cup N(v) \). If \(S \subset V(G) \), \(N[S] = \bigcup_{v \in S} N[v] \). A set \(D \) is dominating if \(N[D] = V(G) \).
- The domination number of \(G \), denoted \(\gamma(G) \), is the smallest cardinality of a set that dominates \(V(G) \).

\(\gamma(G) = 3 \) in the graph below.
Note.
Graphs in this talk are simple.

Definition

- For a vertex $v \in V(G)$, $N(v) = \{u | \{u, v\} \in E(G)\}$ and $N[v] = \{v\} \cup N(v)$. If $S \subset V(G)$, $N[S] = \bigcup_{v \in S} N[v]$. A set D is dominating if $N[D] = V(G)$.

- The domination number of G, denoted $\gamma(G)$, is the smallest cardinality of a set that dominates $V(G)$.

$\gamma(G) = 3$ in the graph below.
Note.

Graphs in this talk are simple.

Definition

- For a vertex $v \in V(G)$, $N(v) = \{u \mid \{u, v\} \in E(G)\}$ and $N[v] = \{v\} \cup N(v)$. If $S \subset V(G)$, $N[S] = \bigcup_{v \in S} N[v]$. A set D is dominating if $N[D] = V(G)$.

- The domination number of G, denoted $\gamma(G)$, is the smallest cardinality of a set that dominates $V(G)$.

$\gamma(G) = 3$ in the graph below.
Note.
Graphs in this talk are simple.

Definition

- For a vertex $v \in V(G)$, $N(v) = \{u \mid \{u, v\} \in E(G)\}$ and $N[v] = \{v\} \cup N(v)$. If $S \subset V(G)$, $N[S] = \bigcup_{v \in S} N[v]$. A set D is *dominating* if $N[D] = V(G)$.

- The *domination number* of G, denoted $\gamma(G)$, is the smallest cardinality of a set that dominates $V(G)$.

$\gamma(G) = 3$ in the graph below.
Note.

Graphs in this talk are simple.

Definition

- For a vertex $v \in V(G)$, $N(v) = \{u \mid \{u, v\} \in E(G)\}$ and $N[v] = \{v\} \cup N(v)$. If $S \subset V(G)$, $N[S] = \cup_{v \in S} N[v]$. A set D is *dominating* if $N[D] = V(G)$.

- The *domination number* of G, denoted $\gamma(G)$, is the smallest cardinality of a set that dominates $V(G)$.

$\gamma(G) = 3$ in the graph below.
Definition

- Given a minimum dominating set D of a graph G with no isolated vertices, an \textit{inverse dominating set} is a set of vertices in $V(G) \setminus D$ that dominates G.

- The \textit{inverse domination number} of G, denoted $\gamma'(G)$, is the smallest cardinality of an inverse dominating set for some minimum dominating set.

$\gamma'(G) = 4$ in the graph below.
Definition

- Given a minimum dominating set D of a graph G with no isolated vertices, an *inverse dominating set* is a set of vertices in $V(G) \setminus D$ that dominates G.
- The *inverse domination number* of G, denoted $\gamma'(G)$, is the smallest cardinality of an inverse dominating set for some minimum dominating set.

$\gamma'(G) = 4$ in the graph below.
Definition

- Given a minimum dominating set D of a graph G with no isolated vertices, an *inverse dominating set* is a set of vertices in $V(G) \setminus D$ that dominates G.

- The *inverse domination number* of G, denoted $\gamma'(G)$, is the smallest cardinality of an inverse dominating set for some minimum dominating set.

$\gamma'(G) = 4$ in the graph below.
Notice.

\[\gamma(G) \leq \gamma'(G) \]

Recall.

\[\gamma(G) \leq \alpha(G) \] (where \(\alpha(G) \) is the maximum cardinality of a set of independent vertices)
Notice.

\[\gamma(G) \leq \gamma'(G) \]

Recall.

\[\gamma(G) \leq \alpha(G) \] (where \(\alpha(G) \) is the maximum cardinality of a set of independent vertices)
Assertion
Kulli and Sigarkanti introduced the inverse domination number and made the following assertion:

$$\gamma'(G) \leq \alpha(G)$$

Initial Proof
Their proof of the assertion was incorrect. This was noticed by Gayla Domke, Jean Dunbar, Teresa Haynes, Steve Hedetniemi, and Lisa Markus.

Inverse Domination Conjecture
Given a graph G with no isolated vertices,

$$\gamma'(G) \leq \alpha(G).$$
Assertion

Kulli and Sigarkanti introduced the inverse domination number and made the following assertion:

$$\gamma'(G) \leq \alpha(G')$$

Initial Proof

Their proof of the assertion was incorrect. This was noticed by Gayla Domke, Jean Dunbar, Teresa Haynes, Steve Hedetniemi, and Lisa Markus.

Inverse Domination Conjecture

Given a graph G with no isolated vertices,

$$\gamma'(G) \leq \alpha(G').$$
Assertion
Kulli and Sigarkanti introduced the inverse domination number and made the following assertion:

\[\gamma'(G) \leq \alpha(G') \]

Initial Proof
Their proof of the assertion was incorrect. This was noticed by Gayla Domke, Jean Dunbar, Teresa Haynes, Steve Hedetniemi, and Lisa Markus.

Inverse Domination Conjecture
Given a graph \(G \) with no isolated vertices,

\[\gamma'(G') \leq \alpha(G'). \]
True Fact (Johnson, Prier, and Walsh)

If G has no isolated vertices and $\gamma(G) \leq 4$ then $\gamma'(G) \leq \alpha(G)$.

The Problem

However, their method is difficult to extend to $\gamma(G) \geq 5$.
True Fact (Johnson, Prier, and Walsh)
If G has no isolated vertices and $\gamma(G) \leq 4$ then $\gamma'(G) \leq \alpha(G)$.

The Problem
However, their method is difficult to extend to $\gamma(G) \geq 5$.
Definition

A fixed inverse domination number of G, denoted $\Gamma'_D(G)$, is the smallest cardinality of an inverse dominating set for a fixed minimum dominating set D.

Observation

Clearly $\gamma(G) \leq \gamma'(G) \leq \Gamma'_D(G)$.

Conjecture

If G has no isolated vertices then $\Gamma'_D(G) \leq \alpha(G)$ for any minimum dominating set D.
Definition

A fixed inverse domination number of \(G \), denoted \(\Gamma'_D(G) \), is the smallest cardinality of an inverse dominating set for a fixed minimum dominating set \(D \).

Observation

Clearly \(\gamma(G) \leq \gamma'(G) \leq \Gamma'_D(G) \).

Conjecture

If \(G \) has no isolated vertices then \(\Gamma'_D(G) \leq \alpha(G) \) for any minimum dominating set \(D \).
Definition

A fixed inverse domination number of G, denoted $\Gamma'_D(G)$, is the smallest cardinality of an inverse dominating set for a fixed minimum dominating set D.

Observation

Clearly $\gamma(G) \leq \gamma'(G) \leq \Gamma'_D(G)$.

Conjecture

If G has no isolated vertices then $\Gamma'_D(G) \leq \alpha(G)$ for any minimum dominating set D.
Based on the observation that $\gamma'(G) \leq \Gamma'_D(G)$, our conjecture is certainly a strengthening of the inverse domination conjecture.

Also, note that for $G = K_{2,m}$, $\gamma'(G) = 2$, but there exists a minimum dominating set D such that $\Gamma'_D(G) = m$.

However, in this extremal case and a few others we’ve studied, $\Gamma'_D(G) \leq \alpha(G)$
Based on the observation that $\gamma'(G) \leq \Gamma'_D(G)$, our conjecture is certainly a strengthening of the inverse domination conjecture.

Also, note that for $G = K_{2,m}$, $\gamma'(G) = 2$, but there exists a minimum dominating set D such that $\Gamma'_D(G) = m$.

However, in this extremal case and a few others we’ve studied, $\Gamma'_D(G) \leq \alpha(G)$.
Based on the observation that $\gamma'(G) \leq \Gamma'_D(G)$, our conjecture is certainly a strengthening of the inverse domination conjecture.

Also, note that for $G = K_{2,m}$, $\gamma'(G) = 2$, but there exists a minimum dominating set D such that $\Gamma'_D(G) = m$.

However, in this extremal case and a few others we’ve studied, $\Gamma'_D(G) \leq \alpha(G)$
Sub-Conjecture

If G has no isolated vertices and $\gamma(G) = 5$ then $\Gamma'_D(G) \leq \alpha(G)$ for any minimum dominating set D.

Let D be a minimum dominating set of G and let I be a maximum independent set where $I \cap D$ is as small as possible. For illustration, suppose $|I \cap D| = 3$.

Goal: Form an inverse dominating set using $I \setminus D$ or reach some contradiction.
Sub-Conjecture

If G has no isolated vertices and $\gamma(G') = 5$ then $\Gamma'_D(G) \leq \alpha(G)$ for any minimum dominating set D.

Let D be a minimum dominating set of G and let I be a maximum independent set where $I \cap D$ is as small as possible. For illustration, suppose $|I \cap D| = 3$.

Goal: Form an inverse dominating set using $I \setminus D$ or reach some contradiction.
Sub-Conjecture

If G has no isolated vertices and $\gamma(G) = 5$ then $\Gamma'_D(G) \leq \alpha(G)$ for any minimum dominating set D.

Let D be a minimum dominating set of G and let I be a maximum independent set where $I \cap D$ is as small as possible. For illustration, suppose $|I \cap D| = 3$

Goal: Form an inverse dominating set using $I \setminus D$ or reach some contradiction.
Suppose both d_0 and d_1 are adjacent to $I \setminus D$.

\begin{center}
\begin{tikzpicture}
\draw (0,0) circle (2cm) node {I};
\draw (4,0) circle (2cm) node {D};
\draw (1,0) -- (3,0);
\draw (2,1) -- (2,-1);
\draw (2,0) node {d_0};
\draw (2,1) node {d_1};
\draw (2,-1) node {d_2};
\draw (3.5,0) node {d_3};
\draw (1.5,0) node {d_4};
\end{tikzpicture}
\end{center}
What is dominating the neighborhood of $I \cap D$ in $V(G) \setminus (I \cap D)$?
What is dominating the neighborhood of $I \cap D$ in $V(G) \setminus (I \cap D)$?
Answer: $I \setminus D$
A lot of case analysis is used, but the idea is that if this were not the case, either $|I|$ would be bigger, $|I \cap D|$ would be smaller, or we could form an inverse dominating set of the proper size.
Let X be a set of no more than $|I \cap D|$ vertices dominating each vertex in $I \cap D$

So $(I \cup X) \setminus D$ is an inverse dominating set where

$\Gamma'_D(G) \leq \alpha(G)$.
Let X be a set of no more than $|I \cap D|$ vertices dominating each vertex in $I \cap D$

So $(I \cup X) \setminus D$ is an inverse dominating set where $\Gamma'_D(G) \leq \alpha(G)$.
Suppose both d_0 and d_1 are not adjacent to $I \setminus D$.

Then $I \setminus D$ is not dominated by D ... a contradiction!
Suppose both d_0 and d_1 are not adjacent to $I \setminus D$.

Then $I \setminus D$ is not dominated by D ... a contradiction!
Suppose only d_1 is adjacent to $I \setminus D$. (We say D' is the set of vertices not adjacent to $I \setminus D$; so, $|D'| = 1$.)
Let $Y = V(G) \setminus D$

Let Z be a maximal independent set in Y that contains at least one vertex that is adjacent to a vertex in $I \cap D$ and then is adjacent to as many vertices in $D \setminus I$ as possible.
Let \(Y = V(G) \setminus D \)

Let \(Z \) be a maximal independent set in \(Y \) that contains at least one vertex that is adjacent to a vertex in \(I \cap D \) and then is adjacent to as many vertices in \(D \setminus I \) as possible.
Let U be the set of at most $|D \setminus (D' \cup (I \cap D))|$ vertices in $V(G) \setminus D$ adjacent to all of the vertices in $D \setminus (D' \cup (I \cap D))$.

Let X be the set of at most $|(I \cap D) \setminus D_0|$ vertices in $V(G) \setminus D$ adjacent to every vertex in $(I \cap D) \setminus D_0$.
Let U be the set of at most $|D \setminus (D' \cup (I \cap D))|$ vertices in $V(G) \setminus D$ adjacent to all of the vertices in $D \setminus (D' \cup (I \cap D))$.

Let X be the set of at most $|(I \cap D) \setminus D_0|$ vertices in $V(G) \setminus D$ adjacent to every vertex in $(I \cap D) \setminus D_0$.

![Diagram](image)
If $|D'| = 0$ or if $|D'| = 2$
then $\Gamma'D(G) \leq \alpha(G)$ as before.

If $|Z| \leq |(I \setminus D) \cup D_0| - 1$
then $Z \cup X \cup U$ is an inverse dominating set of an appropriate size.

If $|Z| > |(I \setminus D) \cup D_0|$ then $Z \cup ((I \cap D) \setminus D_0)$ is a larger independent set than I.

If $|Z| = |(I \setminus D) \cup D_0|$ then $Z \cup ((I \cap D) \setminus D_0)$ is an independent set with smaller intersection to D.
If \(|D'| = 0\) or if \(|D'| = 2\) then \(\Gamma_D'(G) \leq \alpha(G')\) as before.

If \(|Z| \leq |(I \setminus D) \cup D_0| - 1\) then \(Z \cup X \cup U\) is an inverse dominating set of an appropriate size.

If \(|Z| > |(I \setminus D) \cup D_0|\) then \(Z \cup ((I \cap D) \setminus D_0)\) is a larger independent set than \(I\).

If \(|Z| = |(I \setminus D) \cup D_0|\) then \(Z \cup ((I \cap D) \setminus D_0)\) is an independent set with smaller intersection to \(D\).
Exemplary Case

- If $|D'| = 0$ or if $|D'| = 2$ then $\Gamma'_D(G) \leq \alpha(G)$ as before.
- If $|Z| \leq |(I \setminus D) \cup D_0| - 1$ then $Z \cup X \cup U$ is an inverse dominating set of an appropriate size.
- If $|Z| > |(I \setminus D) \cup D_0|$ then $Z \cup ((I \cap D) \setminus D_0)$ is a larger independent set than I.
- If $|Z| = |(I \setminus D) \cup D_0|$ then $Z \cup ((I \cap D) \setminus D_0)$ is an independent set with smaller intersection to D.
If $|D'| = 0$ or if $|D'| = 2$
then $\Gamma'_D(G) \leq \alpha(G)$ as before.

If $|Z| \leq |(I \setminus D) \cup D_0| - 1$
then $Z \cup X \cup U$ is an inverse dominating set of an appropriate size.

If $|Z| > |(I \setminus D) \cup D_0|$
then $Z \cup ((I \cap D) \setminus D_0)$ is a larger independent set than I.

If $|Z| = |(I \setminus D) \cup D_0|$
then $Z \cup ((I \cap D) \setminus D_0)$ is an independent set with smaller intersection to D.
In Conclusion

- There are similar arguments for the cases when $|I \cap D| = \{1, 2\}$; however, some oddities occur.
- The benefit of this approach is that if sub-conjecture is not true, it would point to a possible counterexample.
- This approach is also a plausible approach in that Drs. Peter Johnson and Jessica McDonald (Auburn University) have used this technique to re-prove the inverse domination conjecture for claw-free graphs.
In Conclusion

- There are similar arguments for the cases when $|I \cap D| = \{1, 2\}$; however, some oddities occur.
- The benefit of this approach is that if sub-conjecture is not true, it would point to a possible counterexample.
- This approach is also a plausible approach in that Drs. Peter Johnson and Jessica McDonald (Auburn University) have used this technique to re-prove the inverse domination conjecture for claw-free graphs.
In Conclusion

- There are similar arguments for the cases when $|I \cap D| = \{1, 2\}$; however, some oddities occur.
- The benefit of this approach is that if sub-conjecture is not true, it would point to a possible counterexample.
- This approach is also a plausible approach in that Drs. Peter Johnson and Jessica McDonald (Auburn University) have used this technique to re-prove the inverse domination conjecture for claw-free graphs.
Thank You For Your Kind Attention!

Figure: War Eagle!